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RISE OF GPU COMPUTING

GPU CPU

1980 1990 2000 2010 2020

Original data up to the year 2010 collected and plotted by M. Horowitz, 

F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp
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1.5X per year

40 Years of CPU Trend Data

Single-threaded perf

GPU-Computing perf

1.5X per year

1.1X per year
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CPU
Optimized for 
Serial Tasks

GPU Accelerator
Optimized for 
Parallel Tasks

CPU IS A LATENCY REDUCING ARCHITECTURE

CPU Strengths

• Very large main memory

• Very fast clock speeds

• Latency optimized via large caches

• Small number of threads can run 

very quickly

CPU Weaknesses

• Relatively low memory bandwidth

• Cache misses very costly

• Low performance/watt
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CPU
Optimized for 
Serial Tasks

GPU Accelerator
Optimized for 
Parallel Tasks

GPU IS ALL ABOUT HIDING LATENCY
GPU Strengths

• High bandwidth main memory

• Significantly more compute 

resources

• Latency tolerant via parallelism

• High throughput

• High performance/watt

GPU Weaknesses

• Relatively low memory capacity

• Low per-thread performance
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Heterogeneous Computing

•Terminology:

• Host The CPU and its memory (host memory)

• Device The GPU and its memory (device memory)

Host Device
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SIMPLE PROCESSING FLOW

1. 1. Copy input data from CPU 

memory to GPU 
2.

caching data on chip for performance
3. Copy results from GPU memory to CPU 

PCI Bus
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SIMPLE PROCESSING FLOW

1. 1. Copy input data from CPU 

memory to GPU

2. Load GPU program and execute, 

caching data on chip for 

performance

2.

3.

PCI Bus
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SIMPLE PROCESSING FLOW

1. 1. Copy input data from CPU 

memory to GPU

2. Load GPU program and execute, 

caching data on chip for 

performance

3. Copy results from GPU memory 

back to CPU memory

2.

3.

PCI Bus
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SMALL CHANGES, BIG SPEED-UP
Application Code

+

GPU CPU

Compute-Intensive Functions

Rest of Sequential
CPU Code
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HARDWARE
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V100 SXM2 IN CIRRUS

• 7.8 TFLOPS of double precision 
floating-point (FP64) performance

• 15.7 TFLOPS of single precision 
(FP32) performance

• 125 Tensor TFLOPS

• 16GB Memory

• 900 GB/sec peak bandwidth

• 6MB L2 cache
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HPE PLAINFIELD NODE



13

TENSOR CORES
Hardware for Matrix Multiply and Accumulate operations

• Introduced in the V100

• Perform several MMA calcs per 
clock cycle

• FP32 in, FP32 out (accumulate)

• FP16 multiply

• Turing added int8, int4 
calculations

• Ampere

• Full FP64 MMA

• Bfloat16, Tensor Float 32
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PROGRAMMING
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WAYS TO ACCELERATION

Applications and Frameworks

Libraries

“Drop-in” 

Acceleration

Programming 

Languages
Directives

Maximum

Flexibility

Easily Accelerate

Applications
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GPU ACCELERATED APPS AND FRAMEWORKS

• All major DL frameworks – PyTorch, TensorFlow etc

• Top 15 most used HPC apps

• Apps in a huge range of fields

• Over 1000 apps in total

Catalogue: link

• Domain-specific frameworks – robotics, vis, healthcare etc

• GROMACS, VASP, LAMMPS, RELION, QE, NAMD, SPECFEM3D ...

• https://developer.nvidia.com/hpc-application-performance

• NRF for V100x4 – GROMACS 10-14, LAMMPS 9-44, SPECFEM3D 53

https://images.nvidia.com/aem-dam/Solutions/Data-Center/tesla-product-literature/gpu-applications-catalog.pdf.
https://developer.nvidia.com/blog/creating-faster-molecular-dynamics-simulations-with-gromacs-2020/
https://developer.nvidia.com/blog/nvidia-gpu-accelerated-vasp-6-uses-openacc-to-deliver-15x-more-performance/
https://developer.nvidia.com/hpc-application-performance
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DEEP LEARNING

GPU ACCELERATED LIBRARIES
“Drop-in” Acceleration for Your Applications

LINEAR ALGEBRA PARALLEL ALGORITHMS

SIGNAL, IMAGE & VIDEO

TensorRT

nvGRAPH NCCL

cuBLAS

cuSPARSE cuRAND

DeepStream SDK NVIDIA NPPcuFFT

CUDA

Math library cuSOLVER

CODEC SDKcuDNN

More libraries: https://developer.nvidia.com/gpu-accelerated-libraries

cuTENSOR

https://developer.nvidia.com/gpu-accelerated-libraries
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OpenACC is a directives-

based programming approach 

to parallel computing 

designed for performance

and portability on CPUs 

and GPUs for HPC.  

main()
{
<serial code>
#pragma acc kernels
{  
<parallel code>

}
}

Add Simple Compiler Directive



20

CUDA Fortran, OpenACC, ISO FortranFortran

CUDA C++, OpenACC, ISO C++C, C++

CUDA Python, PyCUDAPython

MATLAB, Mathematica, LabVIEWNumerical analytics

GPU PROGRAMMING LANGUAGES

Altimesh Hybridizer, Alea GPUC#
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GPU PROGRAMMING IN 2021 AND BEYOND
Math Libraries | Standard Languages | Directives | CUDA

Incremental Performance 

Optimization with Directives

Maximize GPU Performance with 

CUDA C++/Fortran

GPU Accelerated

C++ and Fortran

#pragma acc data copy(x,y) 
{

...

std::transform(par, x, x+n, y, y,
[=](float x, float y){

return y + a*x;
});

...

}

__global__ 

void saxpy(int n, float a, 

float *x, float *y) { 

int i = blockIdx.x*blockDim.x + 

threadIdx.x; 

if (i < n) y[i] += a*x[i]; 

} 

int main(void) { 

...

cudaMemcpy(d_x, x, ...);

cudaMemcpy(d_y, y, ...);

saxpy<<<(N+255)/256,256>>>(...);

cudaMemcpy(y, d_y, ...);

std::transform(par, x, x+n, y, y,
[=](float x, float y){

return y + a*x;
});

do concurrent (i = 1:n)
y(i) = y(i) + a*x(i)

enddo

GPU Accelerated Libraries
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static inline
void CalcHydroConstraintForElems(Domain &domain, Index_t length,

Index_t *regElemlist, Real_t dvovmax, Real_t& dthydro)
{
#if _OPENMP

const Index_t threads = omp_get_max_threads();
Index_t hydro_elem_per_thread[threads];
Real_t dthydro_per_thread[threads];

#else
Index_t threads = 1;
Index_t hydro_elem_per_thread[1];
Real_t dthydro_per_thread[1];

#endif
#pragma omp parallel firstprivate(length, dvovmax)

{
Real_t dthydro_tmp = dthydro ;
Index_t hydro_elem = -1 ;

#if _OPENMP
Index_t thread_num = omp_get_thread_num();

#else
Index_t thread_num = 0;

#endif
#pragma omp for

for (Index_t i = 0 ; i < length ; ++i) {
Index_t indx = regElemlist[i] ;

if (domain.vdov(indx) != Real_t(0.)) {
Real_t dtdvov = dvovmax / (FABS(domain.vdov(indx))+Real_t(1.e-20)) ;

if ( dthydro_tmp > dtdvov ) {
dthydro_tmp = dtdvov ;
hydro_elem = indx ;

}
}

}
dthydro_per_thread[thread_num] = dthydro_tmp ;
hydro_elem_per_thread[thread_num] = hydro_elem ;

}
for (Index_t i = 1; i < threads; ++i) {

if(dthydro_per_thread[i] < dthydro_per_thread[0]) {
dthydro_per_thread[0] = dthydro_per_thread[i];
hydro_elem_per_thread[0] = hydro_elem_per_thread[i];

}
}
if (hydro_elem_per_thread[0] != -1) {

dthydro = dthydro_per_thread[0] ;
}
return ;

} C++ with OpenMP

PARALLEL C++

➢ Composable, compact and elegant

➢ Easy to read and maintain

➢ ISO Standard

➢ Portable – nvc++, g++, icpc, MSVC, …

static inline void CalcHydroConstraintForElems(Domain &domain, Index_t length,
Index_t *regElemlist,
Real_t dvovmax,
Real_t &dthydro)

{
dthydro = std::transform_reduce(

std::execution::par, counting_iterator(0), counting_iterator(length),
dthydro, [](Real_t a, Real_t b) { return a < b ? a : b; },
[=, &domain](Index_t i) 

{
Index_t indx = regElemlist[i];
if (domain.vdov(indx) == Real_t(0.0)) {

return std::numeric_limits<Real_t>::max();
} else {

return dvovmax / (std::abs(domain.vdov(indx)) + Real_t(1.e-20));
}

});
}

Parallel C++17
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LULESH PERFORMANCE
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C++ on 2s 20c Xeon Gold 6148 C++ on A100 OpenACC on A100

Speedup – Higher is Better

Same ISO C++ Code
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MATMUL FP64 matrix multiplyInline FP64 matrix multiply

HPC PROGRAMMING IN ISO FORTRAN
NVFORTRAN Accelerates Fortran Intrinsics with cuTENSOR Backend
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Naïve Inline V100 FORTRAN V100 FORTRAN A100
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USING GPUS EFFICIENTLY
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TYPICAL HPC LIBRARIES & BARE METAL

DRIVERS + OPERATING SYSTEM

GCC 5.4.0 GCC 5.4.1

NAMD 2.12 GROMACS 5.1VMD 1.9.3 NAMD 2.13

FFTW 

3.2.1

Charm++

6.7.1

CUDA 9.0
Open MPI 

3.0.2

FFTW 

3.3.8
CUDA 9.2 Open MPI 

3.1.0

Charm++

6.8.2

DRIVERS + OPERATING SYSTEM

CONTAINER RUNTIME

NAMD 2.12

CUDA

libraries

VMD

CUDA

libraries

GROMACS

CUDA

libraries

NAMD 2.13

CUDA

libraries

BARE METAL CONTAINERS
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WHY CONTAINERS?

• Answers the question: “How to get software to run reliably when moved from one 
computing environment to another”

• Run anywhere OS kernel supports it (Mobility of Compute)

• Greatly reduces time-consuming and error-prone bare metal application installations when 
moving from system to system 

• Greatly improves reproducibility (key for HPC)

• Consistent Environment

• Flexibility

• Simplify deployment of software, particularly GPU-accelerated software

• Share, collaborate, and test applications across different environments

• Equivalent performance to baremetal
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NGC: GPU-OPTIMIZED SOFTWARE HUB

50+ Containers

DL, ML, HPC

60 Pre-trained Models
NLP, Image Classification, Object 
Detection and more

Workflows
Medical Imaging, Intelligent Video 

Analytics

NGC

DEEP LEARNING

HPC

NAMD | GROMACS | more

TensorFlow | PyTorch | 
more

MACHINE LEARNING

VISUALIZATION

RAPIDS | H2O | more

ParaView | IndeX | 
more

Simplifying DL, ML and HPC Workflows

15+ Model Training Scripts
NLP, Image Classification, Object 

Detection and more

https://www.nvidia.com/en-gb/gpu-cloud/


29

UNIFIED MEMORY
Access all memory in the node

ALLOCATION

Automatic access to all system 
memory: malloc, statics, globals, 
stack, file system

ACCESS

All data accessible concurrently 
from any processor, anytime

Atomic operations resolved directly 
over NVLink

Managed Memory 
with ATS for POWER9, HMM for x86

V100
1

V100
0

P9/x86

NVLink Interconnect
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VOLTA MULTI-PROCESS SERVICE

Hardware 
Accelerated

Work Submission

Hardware 
Isolation

VOLTA MULTI-PROCESS SERVICE

Volta GV100

A B C

CUDA MULTI-PROCESS SERVICE CONTROL
CPU Processes

GPU Execution

Volta MPS Enhancements:

• Reduced launch latency

• Improved launch throughput

• Improved quality of service with 
scheduler partitioning
• More reliable performance

• 3x more clients than Pascal

• https://docs.nvidia.com/deploy/mps/in
dex.html

A B C

Flexible balance MPI ranks/GPU

https://docs.nvidia.com/deploy/mps/index.html
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OUTSIDE OF THE GPU
Accelerating at all scales

• PCIe3/4

• NVLink

• NVSwitch

• GPUDirect

• Peer to peer

• RDMA

• Storage

• DPU - Bluefield

GPU

Node

System

…
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INTRODUCING NVSHMEM
GPU Optimized OpenSHMEM

➢ Initiate from CPU or GPU

➢ Initiate from within CUDA kernel

➢ Issue onto a CUDA stream

➢ Interoperable with MPI & OpenSHMEM

Pre-release Impact

➢ LBANN, Kokkos/CGSolve, QUDA

data

MPI_Isend

MPI_Isend
data

MPI_Wait

nvshmem_put

nvshmem_put

nvshmem_put

nvshmem_put
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DEVELOPER TOOLS
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TOOLS

• Standalone Performance Tools

• Nsight Systems system-wide application algorithm 
tuning

• Nsight Compute Debug/optimize specific CUDA 
kernels

• Nsight Graphics Debug/optimize specific graphics

• IDE plugins

• Nsight Eclipse Edition/Visual Studio editor, 
debugger, some perf analysis

Investigating and Monitoring Performance

• Resource monitoring and admin

DCGM
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NVIDIA HPC SDK
Available at developer.nvidia.com/hpc-sdk, on NGC, and in the Cloud

Develop for the NVIDIA HPC Platform: GPU, CPU and Interconnect

HPC Libraries | GPU Accelerated C++ and Fortran | Directives | CUDA

7-8 Releases Per Year | Freely Available

Compilers

nvcc nvc

nvc++

nvfortran

Programming
Models

Standard C++ & Fortran

OpenACC & OpenMP

CUDA

Core 
Libraries

libcu++

Thrust

CUB

Math 
Libraries

cuBLAS cuTENSOR

cuSPARSE cuSOLVER

cuFFT cuRAND

Communication 
Libraries

Open MPI

NVSHMEM

NCCL

DEVELOPMENT

Profilers

Nsight

Systems

Compute

Debugger

cuda-gdb

Host

Device

ANALYSIS

NVIDIA HPC SDK
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HPC & AI
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HPC CHALLENGE 1

Fully Integrate New Experiments into the HPC Workflow

1EB/Day

SKA1 Square Kilometre Array radio 
telescope will generate more than 

an Exabyte of data every day.

10X

The CERN large Hadron collider’s 
High Luminosity upgrade will result 
in a 10X increase in data volume.

30X

The 500 MW ITER fusion experiment 
will provide a 30X increase in 
output power over the largest 

previous experiment.
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APPLICATIONS

COMPILERS

TOOLS

ALGORITHMS

LIBRARIES

CUDA

HPC CHALLENGE 2
CONVENTIONAL HPC BEYOND MOORE’S LAW
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CONVERGED HPC*AI CHANGES THE GAME

10,000
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1,000,000

LIGO, Huerta

CFD, King Jaiman

MD, Roitberg
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ALGORITHMS

LIBRARIES

CUDA
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CONVERGED HPC*AI TAXONOMY

How AI Algorithms are Being Applied in the HPC Workflow

Modelling and Simulation Experiment Data Processing

300,000X Faster
Time to solution

95% prediction accuracy with 
5% False positives 49% More Accurate Detection

Ab Initio Algorithm 

Enhancement

Reduced Order 

Model Replacement

Detection  

Pipeline

Real-Time

Control

20X Faster Time to Solution
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RESOURCES
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DEVELOPER ENGAGEMENT PLATFORMS

Information, downloads, special programs, code samples, and 

bug submission

developer.nvidia.com

Containers for cloud and workstation environments ngc.nvidia.com

Insights & help from other developers and NVIDIA technical staff devtalk.nvidia.com

Technical documentation docs.nvidia.com

Deep Learning Institute: workshops & self-paced courses courses.nvidia.com

In depth technical how to blogs devblogs.nvidia.com

Developer focused news and articles news.developer.nvidia.com

Webinars nvidia.com/webinar-portal

GTC on-demand content https://www.nvidia.com/o

n-demand/

https://news.developer.nvidia.com/
https://news.developer.nvidia.com/
https://news.developer.nvidia.com/
https://devblogs.nvidia.com/
https://news.developer.nvidia.com/
https://devblogs.nvidia.com/
https://news.developer.nvidia.com/
https://www.nvidia.com/en-us/about-nvidia/webinar-portal/
https://www.nvidia.com/en-us/on-demand/
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DEEP LEARNING 
INSTITUTE (DLI)

Hands-on, self-paced and instructor-led training 
in deep learning and accelerated computing

Request onsite instructor-led workshops 
at your organization: 
www.nvidia.com/requestdli

Take self-paced courses online: 
www.nvidia.com/dlilabs

Download the course catalog, view 
upcoming workshops, and learn about 
the University Ambassador Program: 
www.nvidia.com/dli

Game Development

Digital Content Creation

More industry-specific 
training coming soon…

Deep Learning 
Fundamentals

Finance

Medical Image AnalysisAutonomous Vehicles

Genomics

Accel. Computing 
Fundamentals

http://www.nvidia.com/object/dli-workshop-request-form.html
http://www.nvidia.com/dlilabs
https://www.nvidia.com/en-us/deep-learning-ai/education/
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RESOURCES AVAILABLE TO ACADEMICS

Developer Teaching Kits: which include free access to online training for students 

but they have to be requested by a lecturer/professor.

Academic Workshops:
The NVIDIA website lists free academic workshops that our Ambassadors are giving 

around the world that you can go and attend

Bootcamps:
~ 2 day tailored training events, typically for a target group e.g. OpenACC, AI for 

Science

Hackathons:
In-depth events with access to NV devtech

https://developer.nvidia.com/teaching-kits
http://www.nvidia.co.uk/dli
https://www.gpuhackathons.org/
https://www.gpuhackathons.org/
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NVIDIA’s GTC brings together a global community of 
developers, researchers, engineers, and innovators 
to experience global innovation and collaboration.  

Don’t miss out on the exclusive GTC keynote by Jensen Huang 
on Nov 9, available to everyone.  

Visit https://www.nvidia.com/gtc to learn more and register 
for free

THE CONFERENCE FOR AI INNOVATORS, 

TECHNOLOGISTS, AND CREATIVES

Join us at GTC Fall 2021 on Nov 8 – 11 for the 
latest in AI, HPC, healthcare, game development, 
networking, and more.

https://www.nvidia.com/gtc/keynote/?ncid=GTC-NVFPARIENTE
https://www.nvidia.com/gtc/?ncid=GTC-NVFPARIENTE
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Geometric mean of application speedups vs. P100: Benchmark application: Amber [PME-Cellulose_NVE], 

Chroma [szscl21_24_128], GROMACS [ADH Dodec], MILC [Apex Medium], NAMD [stmv_nve_cuda], PyTorch

(BERT-Large Fine Tuner], Quantum Espresso [AUSURF112-jR]; Random Forest FP32 [make_blobs (160000 x 64 

: 10)], TensorFlow [ResNet-50], VASP 6 [Si Huge] | GPU node with dual-socket CPUs with 4x NVIDIA P100, 

V100, or A100 GPUs.

1X

2X

3X 

4X

P100 (2016) V100 (2017) V100 (2018) V100 (2019)

KEEP APPS, LIBRARIES AND FRAMEWORKS UP TO DATE

Throughput for Top HPC and DL Apps



Paul Graham | pgraham@nvidia.com


